Endoplasmic reticulum membrane tubules are distributed by microtubules in living cells using three distinct mechanisms
نویسندگان
چکیده
BACKGROUND The microtubule-dependent motility of endoplasmic reticulum (ER) tubules is fundamental to the structure and function of the ER. From in vitro assays, three mechanisms for ER tubule motility have arisen: the 'membrane sliding mechanism' in which ER tubules slide along microtubules using microtubule motor activity; the 'microtubule movement mechanism' in which ER attaches to moving microtubules; and the 'tip attachment complex (TAC) mechanism' in which ER tubules attach to growing plus ends of microtubules. RESULTS We have used multi-wavelength time-lapse epifluorescence microscopy to image the dynamic interactions between microtubules (by microinjection of X-rhodamine-labeled tubulin) and ER (by DiOC6(3) staining) in living cells to determine which mechanism contributes to the formation and motility of ER tubules in migrating cells in vivo. Newly forming ER tubules extended only in a microtubule plus-end direction towards the cell periphery: 31.4% by TACs and 68.6% by the membrane sliding mechanism. ER tubules, statically attached to microtubules, moved towards the cell center with microtubules through actomyosin-based retrograde flow. TACs did not change microtubule growth and shortening velocities, but reduced transitions between these states. Treatment of cells with 100 nM nocodazole to inhibit plus-end microtubule dynamics demonstrated that TAC motility required microtubule assembly dynamics, whereas membrane sliding and retrograde-flow-driven ER motility did not. CONCLUSIONS Both plus-end-directed membrane sliding and TAC mechanisms make significant contributions to the motility of ER towards the periphery of living cells, whereas ER removal from the lamella is powered by actomyosin-based retrograde flow of microtubules with ER attached as cargo. TACs in the ER modulate plus-end microtubule dynamics.
منابع مشابه
Construction of the endoplasmic reticulum
To study the construction of the ER, we used the microtubule-disrupting drug nocodazole to induce the complete breakdown of ER structure in living cells followed by recovery in drug-free medium, which regenerates the ER network within 15 min. Using the fluorescent dye 3,3'-dihexyloxacarbocyanine iodide to visualize the ER, we have directly observed the network construction process in living cel...
متن کاملMovement of membrane tubules along microtubules in vitro: evidence for specialised sites of motor attachment.
We have studied the microtubule-dependent formation of tubular membrane networks in vitro, using a heterologous system composed of Xenopus egg cytosol combined with rat liver membrane fractions enriched in either Golgi stacks or rough endoplasmic reticulum. The first step in membrane network construction involves the extension of membrane tubules along microtubules by the action of microtubule-...
متن کاملA Novel Dynamin-like Protein Associates with Cytoplasmic Vesicles and Tubules of the Endoplasmic Reticulum in Mammalian Cells
Dynamins are 100-kilodalton guanosine triphosphatases that participate in the formation of nascent vesicles during endocytosis. Here, we have tested if novel dynamin-like proteins are expressed in mammalian cells to support vesicle trafficking processes at cytoplasmic sites distinct from the plasma membrane. Immunological and molecular biological methods were used to isolate a cDNA clone encodi...
متن کاملGating Behavior of Endoplasmic Reticulum Potassium Channels of Rat Hepatocytes in Diabetes
Background: Defects in endoplasmic reticulum homeostasis are common occurrences in different diseases, such as diabetes, in which the function of endoplasmic reticulum is disrupted. It is now well established that ion channels of endoplasmic reticulum membrane have a critical role in endoplasmic reticulum luminal homeostasis. Our previous studies showed the presence of an ATP-sensitive cationic...
متن کاملAutocrine motility factor receptor is a marker for a distinct membranous tubular organelle
Autocrine motility factor (AMF) is secreted by tumor cells and is capable of stimulating the motility of the secreting cells. In addition to being expressed on the cell surface, its receptor, AMF-R, is found within a Triton X-100 extractable intracellular tubular compartment. AMF-R tubules can be distinguished by double immunofluorescence microscopy from endosomes labeled with the transferrin r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 8 شماره
صفحات -
تاریخ انتشار 1998